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Abstract

The lecture notes below correspond to the course given by the author in occasion of the VIASM school
on Number Theory (18-24 June 2018, Hanoi). We have chosen to omit the proofs that are already presented
in details in many references in the literature, although they were explained during the lectures, and we
have devoted more space to statements useful in the applications. The applications concern many di�erent
mathematical settings, where linear di�erence equations naturally arise. We cite in particular the case of
Drinfeld modules, which is considered in [Pel] and [TR].
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1 Introduction

The initial data of classical Galois theory are a �eldK, let's say of characteristic 0, and an irreducible polynomial
P ∈ K[x], with coe�cients in K. Then the minimal �eld extension L of K containing a full set of roots of P
is constructed and one de�nes the Galois group G of L/K, namely the group of the �eld automorphisms of L
that �x the elements of K. The group G is �nite and acts on L by shu�ing the roots of P . The idea behind
this construction is that the structure of the group G should reveal hidden algebraic relations among the roots
of P , other than the evident relations given by P itself.

The same kind of philosophy applied to functional equations has been the starting point of di�erential Galois
theory, �rst, and di�erence Galois theory, later. The references are numerous and it is almost impossible to list
them all. We refer to [vdPS03], for the di�erential case, and to [vdPS97] and [HSS16], for the di�erence case.

Let K be a base �eld and τ be an endomorphism of K. We consider a linear di�erence equation τ(Y ) = AY ,
where A is a square invertible matrix with coe�cients in K and Y is a square matrix of unknowns. The usual
approach in Galois theory of di�erence equations is to construct an abstract K-algebra L/K containing the
entries of a fundamental (i.e., invertible) matrix of solutions, under the assumption that the characteristic of
K is zero, that the �eld of constants k is algebraically closed and that τ is surjective. The idea is that, in
order to study the properties of the solutions a di�erence equation, it is not �important� to solve it, but only to
understand the structure of its Galois group. However, in applications, it usually happens that a set of solutions
is given in some speci�c K-algebra: When that's the case, it is not always easy to understand which properties
transfer from the abstract solutions to the ones that we have found.
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In this paper we suppose that we have a fundamental solution is some �eld L/K, equipped with an extension
of τ . The divergence between the classical approach and the apparently more pedestrian approach that we are
considering here, starts immediately: Indeed in general we cannot assume that the �eld L exists and only the
existence of a pseudo �eld is ensured (see Remark 3.6 below). In [CHS08], the authors reconcile these two
points of view and the point of view of model theory: They construct a group using given solutions in a speci�c
algebra and compare it with the group constructed in [vdPS97], but they assume that τ is an automorphism
and the statements on the comparison of the Galois groups are not easy to apply in other settings.

More recently, a very general abstract approach has been considered by A. Ovchinnikov and M. Wibmer in
[OW15, �2.2], where, in contrast with the more classical references, the authors do not make any assumption on
the characteristic of the �eld, they do not require that the endomorphism is surjective, and they do not assume
that the constants are algebraically closed. They do not even assume that K is a �eld, but only that K is a
pseudo �eld.

M. Papanikolas in [Pap08, �4] chooses a framework which is in between the two examples above: He works
on a �eld K equipped with an automorphisms τ , but the characteristic can be positive and the �eld of constants
is not necessarily algebraically closed. Moreover he supposes that he already has a fundamental solution in a
�eld extension of K. We will consider the same setting as Papanikolas, apart from the fact that we only ask
that τ is an endomorphism. This seems to be a reasonable framework for many applications. For the proofs,
we usually refer to [OW15], which is the reference with more general assumptions. Notice that Papanikolas has
a more geometric approach while Ovchinnikov and Wibmer prefer algebraic arguments.

Finally we point out that we assume that the characteristic is zero in �6.2 and �7 and that τ is an automor-
phism in �8.

Remarks on the content and the organization of the text below. The text below is meant to be a
guide to the existing literature. From this perspective, I will give references for the proofs, rather than writing
a self-contained exposition. I'm addressing with particular attention readers that need to apply Galois theory
of di�erence equations, therefore a large space is devoted to statements that may be useful in applications.

The exposition is divided in three parts. The �rst part quickly explains the fundamentals results and ideas
of di�erence Galois theory. In order to be precise and correct I have been obliged to use some more sophisticated
tools. The second part, devoted to applications, is more accessible and applies the statements of the �rst part as
black boxes. We conclude with a last paragraph on the role of normal subgroups in the Galois correspondence.

Acknowledgements I'm indebted to the organizers of the VIASM school on Number Theory, in particular
to Bruno Anglès and Tuan Ngo Dac for their invitation both to give the course and to write the this paper.
I'd like to thank the participants of the Groupe de travail autour des marches dans le quart de plan, who have
endured several talks on this topic, that have in�uenced the text below. In particular, I'm grateful to Alin
Bostan, Frédéric Chyzac and Marni Mishna for their remarks and their attentive reading of various drafts of
this survey and to the anonymous referees for the many useful and constructive comments.

2 Glossary of di�erence algebra

We give here a short glossary of terminology in di�erence algebra. Classical references are [Coh65] and [Lev08].

We consider a �eld F equipped with an endomorphism τ . We will call the pair (F, τ) a τ -�eld or a di�erence
�eld, when the reference to τ is clear from the context. The set k = {f ∈ F : τ(f) = f}, also denoted F τ , is
naturally a �eld and is called the �eld of constants of F . All along this exposition, we will assume that τ is
non-periodic on F (i.e. there exists f ∈ F such that for any n ∈ Z we have τnf 6= f) and we won't assume that
k is algebraically closed. The example below will be our playground until the end of the paper.

Example 2.1. We consider k = C, F = k(x) and τ a non-periodic homography acting on x, so that τ(f(x)) =
f(τ(x)). Supposing that τ has one or two �xed points, we can assume without loss of generality that τ(x) = x+1
or that τ(x) = qx, for some q ∈ Cr {0, 1}, not a root of unity.

We will add the pre�x τ to the usual terminology in commutative algebra, to signify the invariance with
respect to τ . For instance:

� A τ -sub�eld K of a τ -�eld F is a sub�eld of F such that τ induces an endomorphism of K, i.e., such that
τ(K) ⊂ K.

� A τ -K-algebra is a K-algebra equipped with an endomorphism extending τ (which we still call τ for
simplicity).
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� An ideal I of a τ -K-algebra R is a τ -ideal if τ(I) ⊂ I.

� A τ -K-algebra R is τ -simple if its only τ -ideals are R and 0.

Example 2.2. For any x ∈ F transcendental over k, such that τ(x) ∈ k(x) and that for any n ∈ Z we have
τn(x) 6= x, we can consider the �eld K := k(x), on which τ induces a non-periodic endomorphism. Since we
don't ask τ to be surjective, the situation is a little bit more general than Example 2.1. For instance τ can be
the Mahler operator τ(x) = xκ, where κ ≥ 2 is an integer.

For any positive integer n, we can consider kn = F τ
n

and the di�erence �elds (Kn := kn(x), τ) and
(Kn := kn(x), τn).

Sometimes it is useful to consider (k, id), where id stands for the identity map, as a di�erence �eld, therefore
we will call it a trivial τ -�eld. In general we will say that a k-algebra is equipped with a trivial action of τ ,
when τ acts on it as the identity. For further reference we state the following lemma:

Lemma 2.3. Let B be a k-algebra endowed with a trivial action of τ , K a τ -sub�eld of F such that Kτ = k
and let R ⊂ F be a τ -K-algebra. Then R⊗k B has a natural structure of τ -K-algebra de�ned by

(2.1) τ(r ⊗ b) = τ(r)⊗ b, for any r ∈ R and b ∈ B.

Moreover R⊗k B ↪→ F ⊗k B and (R⊗k B)τ = k ⊗k B ∼= B.

Remark 2.4. We have chosen to detail the proof, even if the lemma above is included in many references and
could partially be proved invoking the �atness of F over k. The argument is indeed an instance of a classical
way of reasoning in di�erence algebra and is useful in many situations.

Proof. Clearly Eq. (2.1) de�nes a ring endomorphism, that is the tensor product of τ and the identity in the
category of rings. Since R ⊂ F , we have a natural map of τ -K-algebras R⊗k B → F ⊗k B. We want to prove
that this map is injective. By absurdum, we suppose that the kernel is non-trivial and therefore we choose a
non-zero element

∑n
i=1 ri⊗bi ∈ R⊗kB in the kernel such that n is minimal, i.e., we suppose that there exists no

element of R⊗kB in the kernel, that can be written as a sum of less than n elements of the form r⊗b ∈ R⊗kB.
This implies in particular that the ri's are linearly independent over k and that all the ri's and bi's are non-zero.
Since F is a �eld, in F ⊗kB we can multiply by r−1

n ⊗1, hence we have: 1⊗bn+
∑n−1
i=1 rir

−1
n ⊗bi = 0 in F ⊗kB.

We conclude that the image of
n−1∑
i=1

(
τ(rir

−1
n )− rir−1

n

)
⊗ bi ∈ R⊗k B

in F ⊗k B is zero. The minimality of n, together with the fact that bi 6= 0, implies that τ(rir
−1
n )− rir−1

n = 0
and hence that rir

−1
n ∈ k for any i = 1, . . . , n− 1. The linear independence of the ri's over k implies that n = 1

and hence that r1 ⊗ b1 = 0 in F ⊗k B, with r1 6= 0. Since F is a �eld, r−1
1 ⊗ 1 ∈ F ⊗k B and hence:

1⊗ b1 = (r−1
1 ⊗ 1) · (r1 ⊗ b1) = 0

in F ⊗k B, and we obtain the contradiction b1 = 0. This proves the injectivity.
To conclude it is enough to prove that (R ⊗k B)τ = k ⊗k B. First of all, notice that if r ⊗ b ∈ (R ⊗k B)τ ,

with r 6= 0 6= b, then r ∈ k. By absurdum, let us suppose that there exists
∑n
i=1 ri ⊗ bi ∈ (R⊗k B)τ r k ⊗k B,

such that no ri belongs to k and n is minimal. Once again, the minimality of n implies that the ri's and the
bi's are linearly independent over k. Moreover we know that necessarily n ≥ 2. We conclude that

n∑
i=1

(τ(ri)− ri)⊗ bi = τ

(
n∑
i=1

ri ⊗ bi

)
−

(
n∑
i=1

ri ⊗ bi

)
= 0.

There are two possibility: either the (τ(ri) − ri)'s are linearly dependent over k or they are not. If they are
linearly dependent over k, we can �nd λ1, . . . , λn ∈ k, not all zero, such that

∑n
i=1 λi(τ(ri) − ri) = 0. We can

suppose without loss of generality that λn 6= 0. It implies that

n∑
i=1

λiri =

n∑
i=1

λiτ(ri) = τ

(
n∑
i=1

λiri

)
,

and hence that c :=
∑n
i=1 λiri ∈ k. Since the ri's are linearly independent over k, c is not zero. The k-linearity

of the tensor product implies:∑n
i=1 ri ⊗ bi =

∑n−1
i=1 ri ⊗ bi + λ−1

n

(
c−

∑n−1
i=1 λiri

)
⊗ bn

=
∑n−1
i=1 ri ⊗ (bi − λ−1

n λibn) + λ−1
n c⊗ bn ∈ (R⊗k B)τ .
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Because λ−1
n c ⊗ bn ∈ k ⊗k B ⊂ (R ⊗k B)τ , we conclude that

∑n−1
i=1 ri ⊗ (bi − λ−1

n λibn) ∈ (R ⊗k B)τ . The
minimality of n implies that bi = λ−1

n λibn, for any i = 1, . . . , n− 1. Finally we obtain:

n∑
i=1

ri ⊗ bi =

(
n∑
i=1

λ−1
n λiri

)
⊗ bn ∈ (R⊗k B)τ ,

and therefore that
∑n
i=1 ri ⊗ bi ∈ k ⊗k B, in contradiction with our choice of

∑n
i=1 ri ⊗ bi. We still have to

consider the case in which (τ(ri) − ri)'s are linearly independent over k, with
∑n
i=1 (τ(ri)− ri) ⊗ bi = 0 in

F ⊗k B, but we have seen in the �rst part of the proof that this cannot happen, unless τ(ri) = ri, which is
against our assumptions. This ends the proof of the whole lemma.

3 Picard-Vessiot rings

We now consider a �eld F with an endomorphism τ : F → F . Our base �eld will be a τ -sub�eld K of F ,
containing k := F τ , which implies that Kτ = k. We do assume neither that k is algebraically closed, nor that
τ induces an automorphism of K, but we assume that τ is non-periodic over K. Moreover we assume that F/k
is a separable extension.

Remark 3.1. In the classical theory, one usually assumes that k is algebraically closed, which simpli�es a little
the theory, although not in a fundamental way. The main di�erence comes from the fact that the Galois group,
that we will de�ne in the following section, is an algebraic group over the �eld k. Therefore if k is algebraically
closed one can avoid a more sophisticated geometric point of view and simply identify the Galois group to a
group of invertible matrices with coe�cients in k. This remark will become clearer in what follows. We will
comment again on the consequences of the fact that k is not algebraically closed.

We also point out that the assumption F τ = Kτ = k is crucial, othewise we may end up introducing new
meaningless solutions in the theory. For more details, see Example 3.7 and the proof of Proposition 6.1 below.

We consider a linear di�erence system

(3.1) τ(Y ) = AY, where A ∈ GLd(K),

and we suppose that there exists a fundamental solution matrix U ∈ GLd(F ) of (3.1). Then the �eld L :=
K(U) ⊂ F is obviously stable by τ . We have made an abuse of notation that we will repeat frequently: By
K(U) we mean the �eld generated over K by the entries of U .

There are two main situations that the readers, according to their background, could keep in mind as a
guideline through the text below:

Example 3.2. One can consider the following two classical situations:

1. F is the �eld of meromorphic functions over C in the variable x and τ : f(x) 7→ f(x + 1). Then k is the
�eld of meromorphic 1-periodic functions over C.

2. F is the �eld of meromorphic functions over C∗ in the variable x and τ : f(x) 7→ f(qx), for a �xed complex
number q ∈ Cr {0, 1, roots of unity}. Here k is the �eld of meromorphic q-elliptic functions over C∗.

In both cases, we can chose K to be any τ -sub�eld of F , containing k. A typical choice for K is k(x), which is
the point of view taken in [CHS08], as far as q-di�erence equations is concerned.

Let as consider a linear system τ(~y) = A~y with coe�cients in K, of the form (3.1). In the settings above,
plus the assumption |q| 6= 1 in the q-di�erence case, Praagman proves that τ(~y) = A~y has a fundamental matrix
of solutions with coe�cients in F . See [Pra86, Theorem 1 and Theorem 3]. This does not mean that all possible
solutions are meromorphic. Indeed it is enough to multiply a solution matrix by a matrix whose entries are
functions with some essential singularities and that are constant with respect to τ .

Example 3.3. In [Pap08, �4.1] the triple (k,K, F ) is called a τ -admissible triple. He is speci�cally interested
in the study of t-motifs and, hence, of the associated triple (Fq(t),K,L), de�ned as follows [Pap08, �2.1]:

� Fq(t) is the �eld of rational functions in the variable t and with coe�cients in the �eld Fq with q elements,
where q is an integer power of a prime p;

� K is the smallest algebraically closed and complete extension of a �eld of rational functions Fq(θ), with
respect to the θ−1-adic valuation.
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� L is the �eld of fractions of the ring of all power series in K[[t]] convergent on the closed unit disk for the
θ−1-adic valuation.

The automorphism τ is the inverse of the Frobenius morphism on the algebraic closure of Fq, sends θ to θ1/q ,
and is de�ned on K[[t]] as

τ

∑
n≥0

ant
n

 =
∑
n≥0

a1/q
n tn.

Finally, it extends to L by multiplicativity. Then Lτ = Kτ = Fq(t), as proved in Lemma 3.3.2 in loc.cit..

We start mentioning a technical but fundamental property of the τ -K-algebra generated by the entries of
the solution matrices of (3.1), which allows to reconnect our point of view with the more classical approach of
the Picard-Vessiot theory.

Proposition 3.4. In the notation above, let U ∈ GLd(F ) verify τ(U) = AU . Then R = K
[
U,detU−1

]
⊂ F is

τ -simple.

Proof. The statement is a special case of [OW15, Proposition 2.14], as one can see from De�nitions 2.2 and 2.4
in loc.cit.

At this point, the reader should pay attention to the terminology in the literature. The ring R in the
proposition above and its �eld of fractions L are a weak Picard-Vessiot ring and a weak Picard-Vessiot �eld,
respectively, according to [CHS08, De�nition 2.1]. Indeed it follows immediately from their de�nition that
Rτ = Lτ = k. Proposition 3.4 shows that R and L are respectively a Picard-Vessiot ring and a Picard-
Vessiot �eld, following also the de�nition [OW15, De�ntion 2.12]. For the purpose of this paper, we will use a
terminology in between [CHS08] and [OW15], knowing that R and L satisfy the de�nitions in both the cited
references, and that, therefore, the results in both references apply here.

De�nition 3.5. A τ -simple τ -K-algebra R is called a Picard-Vessiot ring (for (3.1)) if there exists V ∈ GLd(R)
such that τ(V ) = AV and R = K

[
V,detV −1

]
.

A di�erence �eld L is called a Picard-Vessiot �eld over K (for (3.1)) if Lτ = k and L = K(V ) for a
V ∈ GLd(L) such that τ(V ) = AV . We will call L/K a Picard-Vessiot extension.

Remark 3.6. If we do not have a �eld where to �nd enough solutions of our equation, we have to construct an
abstract Picard-Vessiot extension. To do so, one considers the ring of polynomials in the d2 variables X = (xi,j)
with coe�cients in K. Inverting detX and setting τ(X) = AX, we obtain a ring K[X,detX−1] with an
endomorphism τ . Any of its quotients by a maximal τ -invariant ideal is a Picard-Vessiot ring of τ(~y) = A~y
over K. It is important to notice that the ring R does not need to be a domain. It can be written has a direct
sum R1 ⊕ · · · ⊕ Rr, such that: Ri = eiR, for some ei ∈ R such that e2

i = ei; Ri is a domain; there exists a
permutation σ of {1, . . . , r} such that τ(Ri) ⊂ Rσ(i). See [vdPS97, Cor. 1.16]. Its total �eld of fractions is a
pseudo �eld, that is the tensor product of the fraction �eld of each Ri. For a precise de�nition of pseudo �eld,
see for instance [OW15, De�nition 2.2].

The following example shows the importance of the assumption Lτ = k in the de�nition of Picard-Vessiot
�eld.

Example 3.7. Let us consider the equation τ(y) = −y, with k, K and F as above. We suppose that there

exists a 2-dimensional k-vector space of solutions of τ(y) = −y in F , which coincides with k2 := F τ
2

. The
Picard-Vessiot �eld (contained in F ) of τ(y) = −y over K is L := K(k2).

We could also have considered a �eld of rational function F (T ) with coe�cients in F and in the variable T .
Since T is transcendental, we can set τ(T ) = −T and obtain an endomorphism of F (T ). If we do not assume
that the Picard-Vessiot �eld has the same �eld of constants than the base �eld K, we see that K(k2)(T ) is a
Picard-Vessiot �eld for τ(y) = −y, whose �eld of constants is k2(T 2). Of course, the solution T is somehow
arti�cial and the extension K(k2)(T )/K is much bigger (i.e. has many more automorphisms, see next section)
than K(k2)/K.

The expected relations between Picard-Vessiot rings and Picard-Vessiot �elds are veri�ed. If R,L ⊂ F , the
proof is actually straightforward.

Corollary 3.8. [OW15, Proposition 2.15]

1. Let R be domain which is a Picard-Vessiot ring. Then its �eld of fractions is a Picard-Vessiot �eld.
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2. Let L be a Picard-Vessiot �eld for (3.1) and let U ∈ GLd(L) be a solution of (3.1). Then K[U,detU−1] is
a Picard-Vessiot ring.

Notice that one can always compare two di�erent Picard-Vessiot rings, up to an algebraic extension of the
�eld of constants:

Proposition 3.9. Picard-Vessiot rings have the following uniqueness properties:

1. Let R1 and R2 be two Picard-Vessiot rings for (3.1), both contained in F . Then R1 = R2.

2. Let R ⊂ F and R′ be two Picard-Vessiot rings for (3.1). (Notice that we do not suppose that R′ ⊂ F !)

Then there exists an algebraic �eld extension k̃ of k, containing a copy of k′ := (R′)τ , such that R⊗k k̃ is

isomorphic to R′ ⊗k′ k̃ as a K ⊗k k̃-τ -algebra.

Proof. The �rst assertion follows from the fact that any pair of fundamental solutions U, V ∈ GLd(F ) veri�es
τ(U−1V ) = U−1V , i.e., U−1V ∈ GLd(k). In fact, this implies that K[U,detU−1] = K[V,detV −1] ⊂ F . For the
second assertion, see [OW15, Theorem 2.16]. Notice that the key-point of its proof is Lemma 2.13 in loc.cit.,
which ensure that k′/k must be an algebraic extension.

We give an explicit example to explain the necessity of extending the constants to k̃ in the statement above.

Example 3.10. Let k be the �eld of 1-periodic meromorphic functions over C and let K = k(x). The Picard-
Vessiot ring of the equation τ(y) = xy over K, contained in F , is R := K[Γ(x),Γ(x)−1], where Γ(x) is the Euler
Gamma function.

Now let f(x) be a 2-periodic function, algebraic over k, but not meromorphic over C. It means that f(x)
lives on an analytic 2-fold covering of C and has some branching points. The function c(x) := f(2x) is 1-periodic

but does not belong to F , and hence not to k. The K-algebra R′ := K[Γ̃(x), Γ̃(x)−1], where Γ̃(x) := c(x)Γ(x), is

a Picard-Vessiot ring for τ(y) = xy. In the notation of the proposition above, we have k′ = k and k̃ := k(c(x)).

Indeed, Γ(x) 7→ c(x)Γ(x) de�nes an automorphism from R⊗k k̃ to R′ ⊗k k̃ as K ⊗k k̃-algebras.

We close the section with a couple of easy, yet crucial, examples:

Example 3.11. Let a be a non-zero element of K and let us consider the rank-one equation τ(y) = ay. By
assumption there exists a solution z ∈ F verifying τ(z) = az. Hence K[z, z−1] is a Picard-Vessiot ring for
τ(y) = ay and K(z) is a Picard-Vessiot �eld. Generically, z is transcendental over K, but not always. For
instance, if F is the �eld of meromorphic functions over C in the variable x, τ(f(x)) = f(x+ 1) for any f ∈ F ,
K = k(x) and a = −1, we can take z = exp(πix) ∈ F . In this case K(z) is a �nite extension of degree 2, since
exp(πix)2 = exp(2πix) is a 1-periodic function, belonging to k.

Example 3.12. Let f ∈ K and let us consider the inhomogeneous equation τ(y) = y+ f . Such an equation is
equivalent to the matrix system

τ(Y ) =

(
1 f
0 1

)
Y,

whose fundamental solution is given by Y =

(
1 z
0 1

)
, where z ∈ F veri�es τ(z) = z+f . Since Y −1 =

(
1 −z
0 1

)
,

the Picard-Vessiot ring of τ(y) = y + f is K[z] and the Picard-Vessiot �eld is K(z).

4 The Galois group

The Galois group of a di�erence system of the form (3.1) is a linear algebraic group de�ned over the �eld of
constants k. As we have already pointed out, since we have chosen not to assume that k is algebraically closed,
we cannot stick to a naive approach to linear algebraic groups as sets of matrices with entries in the base �eld,
but we have to use the point of view of group schemes. For the reader's convenience we recall informally a
minimal amount of de�nitions that are necessary in what follows. They are contained in any classical reference
on group schemes, for instance [Wat79].

6



4.1 A short digression on group schemes

A group scheme G over the �eld k is a covariant functor from the category of k-algebras to the category of
groups:

G : k-algebras → Groups
B 7→ G(B)

.

An a�ne group scheme is a group scheme which is representable, i.e., there exists a k-algebra k [G] such
that the functor G and Homk(k [G] ,−) are naturally isomorphic. This implies, in particular, that G(B) and
Homk(k [G] , B) are isomorphic as groups, for any k-algebra B.

Example 4.1. For k = Q, we can look at GLn as an a�ne group scheme over Q in the following way:

GLn,Q : Q-algebras → Groups
B 7→ GLn(B)

.

We recall that, for a general Q-algebra B, GLn(B) is the group of square matrices with coe�cients in B, whose
determinant is an invertible element of B. We have:

Q [GLn,Q] =
Q[t, xi,j , i, j = 1, . . . , n]

(tdet(xi,j)− 1)
.

Of course an analogue de�nition holds for the a�ne group scheme GLn,k, de�ne over a generic �eld k. For
n = 1, we obtain the multiplicative a�ne group scheme, for whom we will use the notation Gm,k rather then
GL1,k. The additive a�ne group scheme Ga,k is de�ned as follows:

Ga,k : k-algebras → Groups

B 7→
{(

1 b
0 1

)
| b ∈ B

}
.
.

We have:

k [Ga,k] =
k [GL2,k]

(x1,1 − 1, x2,2 − 1, x2,1)
.

It follows that k [Ga,k] can be naturally identi�ed with the algebra k[x] of polynomial in the variable x and
coe�cients in k. One can de�ne in an analogous way the a�ne group scheme SLn,k over k, whose algebra is

k [SLn,k] =
k[xi,j , i,j=1,...,n]

(det(xi,j)−1) .

The Yoneda Lemma ensures that k [G] is unique up to isomorphism. An important property (that we won't
use, because we are not getting into the details of the proofs) of k [G] is that it has a natural structure of Hopf
algebra.

The a�ne group scheme G is said to be an algebraic group if k [G] is a �nitely generated k-algebra. This
means that k [G] can be identi�ed with a quotient k[x1, . . . , xn]/I of a ring of polynomials by a convenient
(Hopf) ideal I. It allows to identify G(B) with the set of zeros of I in Bn, for any k-algebra B. In other words,
G can be identi�ed with an a�ne variety de�ned over k. All the a�ne group schemes in Example 4.1, as well
as all the a�ne group schemes appearing in this paper, are algebraic groups.

If G is an algebraic group and G′ is another a�ne group scheme de�ned over k, we say that G′ is an a�ne
subgroup scheme of G if there exists a surjective morphism of Hopf algebras k [G] → k [G′]. This implies that
G′(B) can be identi�ed naturally to a subgroup of G(B), for any k-algebra B. We say that G′ is a normal
algebraic subgroup of G, if G′(B) is a normal subgroup of G(B), for any k-algebra B.

Example 4.2. In the notation of Example 4.1, we have:

1. The additive a�ne group scheme Ga,k is an algebraic subgroup of GL2,k.

2. We have a surjective morphism from k [GLn,k] to k [SLn,k] de�ned by t 7→ 1, therefore SLn,k is naturally an
algebraic subgroup of GLn,k.

For further reference, we describe the algebraic subgroups of Gm,k. As we have already pointed out, we have

k[Gm,k] = k[x,t]
(xt−1) , therefore we can write for short k[Gm,k] = k

[
x, 1

x

]
. The algebraic subgroups of Gm,k are the

de�ned by equations of the form xn − 1, for any non-negative integer n. They are represented by the quotients
k[x, 1x ]
(xn−1) . If G is one of those subgroups, with n ≥ 1, and B is a k-algebra, then G(B) is nothing more that the

group of n-th roots of unity contained in B. For n = 1, we obtain the trivial algebraic subgroup {1} of Gm,k,
while for n = 0 we obtain the whole Gm,k.
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Let us consider the algebraic groupGnm,k, for some positive integer n. We have k[Gnm,k] = k
[
x1,

1
x1
, . . . , xn,

1
xn

]
.

The algebraic subgroups of Gnm,k are de�ned by polynomials of the form xα1
1 . . . xαnn − 1, where α1, . . . , αn ∈ Z.

We will also need the description of the algebraic subgroups of Gna,k, where n is a positive integer. For any
k-algebra B, Gna,k(B) can be naturally identi�ed to Bn. Therefore, an algebraic subgroup G of Gna,k is de�ned
by an ideal generated by at most n independent linear equations with coe�cients in k. In particular, we will
use the fact that a proper algebraic subgroup of Gna,k is always an algebraic subgroup of the group represented

by the algebra k[x1,...,xn]
(α1x1+···+αnxn) , for some α1, . . . , αn ∈ k, not all zero. Notice that, for n = 1, the algebraic group

Ga,k does not have any proper algebraic subgroup.

4.2 The Galois group of a linear di�erence system

Let K ⊂ F be our base �eld, with k = Kτ = F τ , and let us consider a system of the form (3.1). From now on
we will assume implicitly that all Picard-Vessiot rings and all Picard-Vessiot �elds are contained in F . So let R
(⊂ F ) be a Picard-Vessiot ring for (3.1) and let L be its �eld of fractions.

For more details on what follows, see [OW15, �2.7].1

De�nition 4.3. [OW15, 2.50] We call the (di�erence) Galois group of (3.1) the following group scheme:

Gal(L/K) : k-Algebras → Groups
B 7→ Autτ (R⊗k B/K ⊗k B),

where:

1. the k-algebra B is endowed with a structure of trivial τ -k-algebra, so that τ(f ⊗ b) = τ(f) ⊗ b, for any
f ∈ R and any b ∈ B;

2. Autτ (R⊗k B/K ⊗k B) is the group of the ring automorphisms of R⊗k B, that �x K ⊗k B and commute
with τ .

The functor Gal(L/K) acts on morphisms by extension of constants, namely, each morphism of k-algebras
α : B1 → B2 de�nes a structure of B1-algebra over B2 and the de�nition of Gal(L/K)(α) : Autτ (R⊗kB1/K⊗k
B1)→ Autτ (R⊗k B2/K ⊗k B2) relies on the fact that R⊗k B2

∼= R⊗k B1 ⊗B1,α B2.

For any choice of a fundamental solution matrix U ∈ GLd(R) of (3.1), for any k-algebra B and any ϕ ∈
Gal(L/K)(B) we have that

τ(U−1ϕ(U)) = U−1A−1ϕ(A)ϕ(U) = U−1ϕ(U) ∈ GLd(B),

where we have identi�ed U and U ⊗ 1 in R ⊗k B, making an abuse of notation that we will repeat frequently.
(Notice that we have used the fact that (R⊗k B)τ = B. See Lemma 2.3.) The maps ϕ 7→ U−1ϕ(U) represents
Gal(L/K)(B) as a subgroup of GLd(B). The linearity of the di�erence system (3.1) immediately implies that
another choice of the fundamental solution matrix leads to a conjugated representation, so that most of the
times we can identify Gal(L/K)(B) with a subgroup scheme of GLd,k(B), forgetting to mention the matrix U .
The following proposition says that such a representation is functorial in B, in the sense that Gal(L/K) is an
algebraic subgroup of GLd,k, as in the next example.

Example 4.4. Let us consider the rank-one di�erence equation τ(y) = ay, where a ∈ K, as in Example 3.11.
By assumption, there exists z ∈ F such that τ(z) = az and R = K[z, z−1] is its Picard-Vessiot ring. For any
k-algebra B and any ϕ ∈ Gal(L/K)(B), the element ϕ(z ⊗ 1) of R ⊗k B must be a solution of τ(y) = ay, and
hence there exists cϕ ∈ B∗ such that ϕ(z ⊗ 1) = cϕ(z ⊗ 1). This means that Gal(L/K) can be identi�ed with
a subgroup of the multiplicative group Gm,k de�ned over k, therefore it coincides either with Gm,k or with a
cyclic group. If for instance a = −1, then we must have z2 ∈ k, and therefore c2ϕ = 1.

Proposition 4.5. [OW15, Lemma 2.51] The Galois group Gal(L/K) is an algebraic group de�ned over k,
represented by the k-algebra (R⊗K R)τ .

Remark 4.6. We remind that the statement above means that (R⊗K R)τ is a �nitely generated k-algebra and
that the functors Gal(L/K) and Homk-Algebra((R⊗K R)τ ,−) are naturally isomorphic. In particular for any

k-algebra B, we have can identify Gal(L/K)(B) with Homk-Algebra((R⊗K R)τ , B).

1In the notation of [OW15], one has to take Φ = τ and σ to be the identity.
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The proposition above says that there exists an ideal I of the ring of polynomials k[X,detX−1], with
X = (xi,j)i,j=1,...,d, such that for any k-algebra B the image of the group morphism de�ned above

Gal(L/K)(B) → GLd(B)
ϕ 7→ [ϕ]U := U−1τ(U)

is exactly the set of zeros of I in GLd(B). The idea of the proof is to consider the k-algebra k[Z,detZ−1] ↪→
(R⊗k R)τ , where Z := (U−1 ⊗ 1)(1⊗ U). Then one can prove that we have the series of isomorphisms:

R⊗K R ∼= R.k[Z,detZ−1] ∼= R⊗k (R⊗K R)
τ
.

This allows to prove a series of group isomorphisms showing that for any k-algebra B we have:

Homτ -(K ⊗k B)-alg(R⊗k B,R⊗k B) ∼= Homk-alg((R⊗K R)τ , B).

See [OW15] for details.

Example 4.7. Let F be the �eld of meromorphic functions over C∗ and let τ be de�ned by τ : f(x) 7→ f(qx),
for q ∈ C, such that |q| > 1. The �eld of constants k is the �eld of meromorphic functions over the torus C∗/qZ
and we set K = k(x). The Jacobi Theta function

Θ(x) =
∑
x∈Z

q−n(n+1)/2xn ∈ F

is solution of the di�erence equation τ(y) = xy. Its di�erential Galois group G is the multiplicative group.
Indeed for any k-algebra B and for any ϕ ∈ G(B), ϕ multiplies Θ(x) by an invertible element of B. On the
other hand, since Θ(x) is a transcendental function, any invertible constant of B de�nes an automorphism of
K[Θ(x),Θ(x)−1]⊗k B.

Now let us consider an integer r ≥ 2 and choose a r-th root q1/r of q. The meromorphic function z(x) :=
Θ(q1/rx)/Θ(x) ∈ F is a solution of the �nite di�erence equation τ(y) = q1/ry and its di�erence Galois group
is the cyclic subgroup of Gm,k of order r. To prove the last claim it is enough to notice that z(qx)r = qz(x)r,
hence z(x)r is a meromorphic function of the form xg(x), with g(x) ∈ k ⊂ K.

Example 4.8. Let us consider an element f ∈ K and the inhomogeneous di�erence equation τ(y) = y+ f . By
assumption, there exists a solution z ∈ F and we have already noticed that R = k[z]. See Example 3.12. For any
k-algebra B and any ϕ ∈ Gal(L/K), the element ϕ(z) of R⊗kB must be another solution of τ(y) = y+f , hence
there exists cϕ ∈ B such that ϕ(z) = z+ cϕ (here we have identi�ed z and z⊗ 1). It follows that Gal(L/K) is a
algebraic subgroup of the additive group Ga,k. This means that either Gal(L/K) = {1} or Gal(L/K) = Ga,k.

4.3 Transcendence degree of the Picard-Vessiot extension

We can now state the �rst important result from the point of view of applications to number theory and
more speci�cally to transcendence. It compares the dimension of G over k as an algebraic variety and the
transcendence degree of R over K and its proof is based on Proposition 4.5.

Theorem 4.9. [OW15, Lemma 2.53] Let R, L and G be as above. Then the dimension of G as an algebraic
variety over k is equal to the transcendence degree of R (or of L) over K:

dimkG = trdegKR = trdegKL.

Example 4.10. Let us consider the case of �nite di�erence equations, i.e, let F be the �eld of meromorphic
functions over C equipped with the operator τ : f(x) 7→ f(x + 1). Then k is the �eld of 1-periodic functions
and we set K = k(x). We consider the di�erence equations τ(y) = xy, which is satis�ed by the Euler Gamma
function Γ(x). Its Picard-Vessiot ring is K[Γ(x),Γ(x)−1], as discussed in Example 3.11. As in Example 4.4,
its Galois group G is a subgroup of Gm,k. For any k-algebra B and any ϕ ∈ G(B), there exists an invertible
element cϕ of B such that ϕ(Γ) = cϕΓ. As already explained, the proper subgroups of Gm,k are the �nite cyclic
groups. If G was a the cyclic group, Γ(x) would be an algebraic function, by the previous theorem. Proving
that the functional equations of the Gamma function implies that it is not algebraic over k(x) is an exercise
that we leave to the reader. Therefore the di�erence Galois group G is the whole Gm,k.

Example 4.11. Let us consider the system

τ(Y ) =

x 1 0
0 x 1
0 0 x

Y.
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We denote by (·)′ the derivation d
dx , with respect to x. Since τ and d

dx commute, we have:

τ

(
Γ′(x)

)
=

d

dx

(
xΓ(x)

)
= xΓ′(x) + Γ(x)

and

τ

(
Γ′′(x)

2

)
=

1

2

d

dx

(
xΓ′(x) + Γ(x)

)
= x

Γ′′(x)

2
+ Γ′(x).

Therefore a solution matrix is given by

Y =

Γ(x) Γ′(x) Γ′′(x)/2
0 Γ(x) Γ′(x)
0 0 Γ(x)

 ,

so that the associated Picard-Vessiot ring is R = K
[
Γ(x),Γ′(x),Γ′′(x),Γ(x)−1

]
. Let G be its di�erence Galois

group and let B be a k-algebra. For any ϕ ∈ G(B), ϕ commutes to the action of τ over R⊗kB, therefore it must
send any element of R, which is solution of a τ -di�erence equation, into a solution of the same equation. We know

that Γ is solution of a homogenous order 1 equation, while Γ′(x)
Γ(x) and d

dx

(
Γ′(x)
Γ(x)

)
are solutions inhomogeneous

order 1 equations. Therefore, as in Examples 4.4 and 4.8, there must exist cϕ ∈ Gm,k(B) and (d1,ϕ, d2,ϕ) ∈
Ga,k(B)2 such that 

ϕ
(
Γ(x)

)
= cϕΓ(x),

ϕ

(
Γ′(x)

Γ(x)

)
=

Γ′(x)

Γ(x)
+ d1,ϕ,

ϕ

(
d

dx

(
Γ′(x)

Γ(x)

))
=

d

dx

(
Γ′(x)

Γ(x)

)
+ d2,ϕ =

Γ′′(x)

Γ(x)
− Γ′(x)

Γ2(x)
+ d2,ϕ.

So we have represented G as a subgroup of Gm,k ×G2
a,k. Since Γ(x),Γ′(x),Γ′′(x) are algebraically independent

by Hölder theorem [Höl87] (see Proposition 7.3 below for a proof), it is actually an isomorphism, thanks to
Theorem 4.9. The construction above can be easily generalized to system associated to a Jordan block of
eigenvalue x and order higher than 3, using higher order derivatives of Γ.

Now let us consider the �nite di�erence equation (τ − x)n(y) = 0, for some positive integer n. Such an
equation occurs in generalized Carlitz modules studied in [HR97] and more extensively in [Pel13]. We have seen
that Γ is a solution for n = 1. One can verify recursively that, for n > 1, a basis of solution over k is given by
the higher order derivatives of Γ with respect to x, namely the set Γ(x),Γ′(x), . . . ,Γ(n−1)(x). It follows that the
Picard-Vessiot ring is the same as the one of the system above, namely R =

[
Γ(x),Γ′(x), . . . ,Γ(n−1)(x),Γ(x)−1

]
.

We conclude that the Galois group is Gm,k ×Gn−1
a,k .

Before being able to prove the most common results used in the applications, we need to state the Galois
correspondence and its properties.

5 The Galois correspondence (�rst part)

We consider R,L ⊂ F and G := Gal(L/K) as above.

De�nition 5.1. Let r
s ∈ L, with r, s ∈ R and s 6= 0, and let ϕ ∈ G(B), for a k-algebra B. We say that r

s is
invariant under the action of ϕ if in R⊗k B we have:

ϕ(r ⊗ 1)(s⊗ 1) = (r ⊗ 1)ϕ(s⊗ 1).

If H is an algebraic subgroup of G de�ned over k, then r
s is invariant under the action of H if r

s is invariant
under the action of ϕ, for all k-algebras B and all ϕ ∈ H(B).

We denote by LH the set of elements of L invariant under the action of H.

Remark 5.2. Notice that if ϕ ∈ G(k), then the condition above simply means that ϕ(r)
ϕ(s) = r

s in L.

If M is an intermediate �eld of L/K, stable by τ , then we can consider (3.1) as a system de�ned over
M . Indeed if L is a Picard-Vessiot �eld over K, it must be a Picard-Vessiot �eld over M and we can de�ne
Gal(L/M).
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Theorem 5.3. [OW15, 2.52] There exists a one-to-one correspondence between the algebraic subgroup of G
de�ned over k and the intermediate �elds of L/K stable by τ . In the notation above we have two maps that are
one the inverse of the other and are de�ned by:

H 7→ LH , M 7→ Gal(L/M).

Moreover if H is an algebraic subgroup of G, then H = G if and only if LH = K.

As usual in Galois theories, the last statement is the key-point of the Galois correspondence.

6 Application to transcendence and di�erential transcendence

6.1 General statements

From the theorems above we deduce a �rst result on transcendency that is very useful in many settings. The
criteria of transcendence below are contained in [HS08, �3], up to some reformulations. They are the key-point
of several applications, for instance in [DHR18], [DHR16], [DHRS18], [DHRS20], [DH19].

In the proposition below the assumption k = F τ = Kτ is crucial as well as in all the subsequent results in
this section.

Proposition 6.1. Let f1, . . . , fd ∈ K∗ and let z1, . . . , zd ∈ F be a solution of the following inhomogeneous
di�erence system:

(6.1)
{
τ(zi) = zi + fi, for i = 1, . . . , d.

The following assertions are equivalent:

1. There exist λ1, . . . , λd ∈ k, not all zero, and g ∈ K such that λ1f1 + · · ·+ λdfd = τ(g)− g.

2. There exist λ1, . . . , λd ∈ k, not all zero, such that λ1z1 + · · ·+ λdzd ∈ K.

3. There exist λ1, . . . , λd ∈ K, not all zero, such that λ1z1 + · · ·+ λdzd ∈ K.

4. z1, . . . , zd are algebraically dependent over K.

Remark 6.2. Notice that the �rst statement above is about the fi's, while the others are about the zi's.

Proof. Let us assume that we are in the situation of the �rst assertion. We have:

τ

(
d∑
i=1

λizi − g

)
=

d∑
i=1

λizi − τ(g) +

d∑
i=1

λifi =

d∑
i=1

λizi − g,

hence
∑d
i=1 λizi − g ∈ k, which proves 2. Moreover, the implications 2⇒ 3⇒ 4 are tautological.

We conclude by proving that 4⇒ 1. As in Example 4.8, the system (6.1) is equivalent to the following linear
system of order 2d:

τ(Y ) =



1 f1

0 1
0 · · · 0

0
1 f2

0 1

. . .
...

...
. . .

. . . 0

0 · · · 0
1 fd
0 1


Y,

so that its Picard-Vessiot ring is R = k[z1, . . . , zd]. It follows that Gal(L/K) is an algebraic subgroup of Gda,k,
de�ned over k, and that for any k-algebra B and any ϕ ∈ Gal(L/K)(B) there exists cϕ,1, . . . , cϕ,d ∈ B such
that ϕ(zi) = zi + cϕ,i.

Since z1, . . . , zd are algebraically dependent over K, Theorem 4.9 implies that the dimension of Gal(L/K)
is strictly smaller than d and hence Gal(L/K) is a proper subgroup scheme of Gda,k. All the proper algebraic

subgroup of Gda,k are contained in a hyperplane and Gal(L/K) is de�ned over k, therefore there exist λ1, . . . , λd ∈
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k, not all zero, such that for any k-algebra B and any ϕ ∈ Gal(L/K)(B), we have
∑d
i=1 λicϕ,i = 0. We conclude

that g :=
∑d
i=1 λizi veri�es

ϕ(g) =

d∑
i=1

λizi +

d∑
i=1

λicϕ,i =

d∑
i=1

λizi = g,

and hence that g ∈ K, by the Galois correspondence. Finally we have:

τ(g)− g = τ

(
d∑
i=1

λizi

)
−

d∑
i=1

λizi =

d∑
i=1

λifi.

In an analogous way, taking into account that the algebraic subgroup of Gdm,k are de�ned by equations of
the form xα1

1 · · ·x
αd
d = 1, for some α1, . . . αd ∈ Z, it is possible to prove the following proposition:

Proposition 6.3. Let a1, . . . ad ∈ K∗ and let z1, . . . , zd ∈ F ∗ be a solution of the following di�erence system:

(6.2)
{
τ(zi) = aizi, for i = 1, . . . , d.

The following assertions are equivalent:

1. There exist λ1, . . . , λd ∈ Z, not all zero, and g ∈ K such that aλ1
1 · · · a

λd
d = τ(g)/g.

2. There exist λ1, . . . , λd ∈ Z, not all zero, such that zλ1
1 · · · z

λd
d ∈ K.

3. z1, . . . , zd are algebraically dependent over K.

Remark 6.4. Notice that Proposition 6.3 has one more characterization of the algebraic dependency of the
solutions. Here we only have 3 assertions because of the multiplicative form of the algebraic subgroups of Gdm,k.

6.2 Di�erential algebraicity and D-�niteness

We now switch our attention to the characterization of di�erential algebraicity, hence in this subsection we
assume that we are in characteristic zero. We assume that the �eld F comes equipped with a derivation ∂ that
commutes with the endomorphism τ . This implies in particular that ∂ induces a derivation on both k and K.

Example 6.5. In the notation of Example 2.1, we can take ∂ = d
dx for τ : f(x) 7→ f(x+ 1) and and ∂ = x d

dx
for τ : f(x) 7→ f(qx).

We recall the following de�nition:

De�nition 6.6. We say that f ∈ F is di�erentially algebraic (with respect to ∂) over K, if there exists an
integer n ≥ 0 such that f, ∂(f), . . . , ∂n(f) are algebraically dependent over K, or, equivalently, if f is solution
of an algebraic di�erential equation over K. We say that f is di�erentially transcendental over K if it is not
di�erentially algebraic over K and that it is D-�nite over K if it is di�erentially algebraic and, moreover, it is
the solution of a linear di�erential equation with coe�cients in K.

We say that F is di�erentially algebraic over K is all elements of F are di�erentially algebraic over k.

Once again, the assumption F τ = Kτ is crucial in the following corollaries:

Corollary 6.7. Let f ∈ K∗ and z ∈ F be a solution of τ(y) = y + f . The following statements are equivalent:

1. There exist n ≥ 0, λ0, . . . , λn ∈ k, not all zero, and g ∈ K such that λ0f+λ1∂(f)+· · ·+λn∂n(f) = τ(g)−g.

2. There exist n ≥ 0, λ0, . . . , λn ∈ k, not all zero, such that λ0z + λ1∂(z) + · · ·+ λn∂
n(z) ∈ K.

3. z is D-�nite over K.

4. z is di�erentially algebraic over K.

In particular, the corollary above says that:

Corollary 6.8. In the notation of Corollary 6.7, if z is not D-�nite over K then z is di�erentially transcendental
over K.
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Proof of Corollary 6.7. The assumption on the commutativity of ∂ and τ implies that z satis�es all the following
di�erence equations:

τ
(
∂i(z)

)
= ∂i(z) + ∂i(f), for all i = 0, 1, 2, . . . .

The statement follows from Proposition 6.1.

Corollary 6.9. Let a ∈ K∗ and z ∈ F ∗ be a solution of τ(y) = ay. The following statement are equivalent:

1. There exist n ≥ 0, λ0, . . . , λn ∈ k, not all zero, and g ∈ K such that λ0
∂(a)
a + λ1∂

(
∂(a)
a

)
+ · · · +

λn∂
n
(
∂(a)
a

)
= τ(g)− g.

2. There exist n ≥ 0, λ0, . . . , λn ∈ k, not all zero, such that λ0
∂(z)
z + λ1∂

(
∂(z)
z

)
+ · · ·+ λn∂

n
(
∂(z)
z

)
∈ K.

3. ∂(z)
z is D-�nite over K.

4. z is di�erentially algebraic over K.

Proof. Notice that z is di�erentially algebraic over K if and only if ∂(z)/z is di�erentially algebraic over K. In

fact, ∂n
(
∂(z)
z

)
∈ 1

znK[z, ∂(z), . . . , ∂n(x)], therefore an elementary algebraic manipulation allows to transform

an algebraic di�erential equation satis�ed by z into an algebraic di�erential equation satis�ed by ∂(z)/z and
vice versa. Taking the logarithmic derivative of τ(z) = az, we obtain:

τ

(
∂(z)

z

)
=
∂(z)

z
+
∂(a)

a
.

The statement follows from the Corollary 6.7.

Remark 6.10. The generalization of the last two corollaries to systems of order 1 equations and to an arbitrary
set of commuting derivations is straightforward. For the generalization to the case of equation of the form
τ(y) = ay + f , we refer to [HS08, Propositions 3.8, 3.9, and 3.10].

7 Applications to special cases

In this section we suppose that F has characteristic zero. The results in �7.1 and �7.3 have been originally
proven in [HS08, �3].

7.1 Finite di�erence equations and Hölder theorem

We are in the situation of Example 4.10, i.e., let F be the �eld of meromorphic functions over C equipped with
the operator τ : f(x) 7→ f(x+ 1). Then k is the �eld of meromorphic 1-periodic functions and we set K = k(x).
We set ∂ = d

dx , which commutes with τ .

Corollary 7.1. In the notation above, let f ∈ K∗ and z ∈ F be such that τ(z) = z+f . The following assertions
are equivalent:

1. z is di�erentially algebraic over K.

2. z is D-�nite over K.

3. There exist a positive integer n, λ0, . . . , λn ∈ k and g ∈ K such that

λ0f + λ1∂ (f) + · · ·+ λn∂
n (f) = g(x+ 1)− g(x).

If f ∈ C(x) (resp. f ∈ Q(x)), then they are also equivalent to:

4. There exist a positive integer n, λ0, . . . , λn ∈ C (resp. ∈ Q) and g ∈ C(x) (resp. ∈ Q(x)) such that

λ0f + λ1∂ (f) + · · ·+ λn∂
n (f) = g(x+ 1)− g(x).
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Proof. Notice that 1 ⇔ 2 ⇔ 3 follow from Corollary 6.7. Moreover 4 ⇒ 3 is trivial. Let us prove that
3 ⇒ 4, by a classical descent argument. Let C = C or Q, so that f ∈ C(x). Let N be the degree of
the denominator of g and M the degree of its denominator. We consider a ring of polynomials of the form
C[Λ0, . . . ,Λn, A0, . . . , AN , B0 . . . , BM ], so that we can write the equality

(7.1) Λ0f + Λ1∂ (f) + · · ·+ Λn∂
n (f) =

A0 +A1(x+ 1) + · · ·+AN (x+ 1)N

B0 +B1(x+ 1) + · · ·+BM (x+ 1)M
− A0 +A1x+ · · ·+ANx

N

B0 +B1x+ · · ·+BMxM
.

Equalizing the coe�cients of each integer powers of x in (7.1), we obtain a system of polynomial equations with
coe�cients in C, that has a solution in k, by assumption. Since C is an algebraically closed �eld contained in
k, it must also have a solution in C. This proves the corollary.

Although the last assertion of Corollary 7.1 is stated over C (or over Q), we cannot conclude the di�erential
algebraicity of z over C(x). See Example 7.4 that it is based on the fact that there are meromorphic 1-periodic
functions that are di�erentially transcendental over C(x). For now, notice that the statement above only implies
the following:

Corollary 7.2. We consider the same notation as in the previous corollary, with C = Q or C and f ∈ C(x).
Suppose that for any n ≥ 0, any λ0, . . . , λn ∈ C and any g ∈ C(x), we have: λ0f + λ1∂ (f) + · · ·+ λn∂

n (f) 6=
g(x+ 1)− g(x). Then z is di�erentially transcendent over K and hence over C(x).

The Euler Gamma function, that we have already mentioned in some examples, is a meromorphic function
over C satisfying the functional equation Γ(x + 1) = xΓ(x). Hölder theorem [Höl87] says that the Gamma
function is di�erentially transcendental over C(x) and we are now able to prove it, using a Galoisian argument
that has �rst appeared in [Har08] and [HS08]. Notice that in [BK78] there is a similar proof of the di�erential
transcendency of the Gamma function, which relies on a statement similar to Corollary 7.2 in the speci�c case
of the Gamma function, proven by an elementary argument of complex analysis.

Proposition 7.3. The Gamma function Γ is di�erentially transcendental over C(x).

Proof. As in the proof of Proposition 6.9, the Gamma function Γ is di�erentially transcendental over C(x) if
and only if the function ψ(x) := ∂(Γ)(x)/Γ(x), that veri�es the functional equation

τ(ψ(x)) = ψ(x) +
1

x
,

is di�erentially transcendental over C(x). Suppose that there exist a positive integer n, λ0, . . . , λn ∈ C and
g ∈ C(x) such that

λ0
1

x
+ λ1∂

(
1

x

)
+ · · ·+ λn∂

n

(
1

x

)
= g(x+ 1)− g(x).

Since the left-hand side has all its poles at 0, while the right-hand side must have at least a non-zero pole, we
�nd a contradiction, by Corollary 7.2.

The following is a counterexample, based on Hölder theorem, for the fact that we cannot conclude the
di�erential algebraicity over C(x) in Corollary 7.1.

Example 7.4. The meromorphic function Γ(exp(2iπx)) is 1-periodic, hence belongs to k ⊂ K, but is not di�er-
entially algebraic over C(x), since it is the composition of a di�erentially algebraic function and a di�erentially
transcendental function. In other words, K itself is di�erentially transcendental over C(x).

Corollary 7.5. [HS08, Corollary 3.4] Let a(x) ∈ C(x)∗ and let z be a meromorphic function over C solution

of z(x + 1) = a(x)z(x). Then z(x) is di�erentially algebraic over k(x) if and only if a(x) = c g(x+1)
g(x) , for some

g(x) ∈ C(x) and c ∈ C.

Proof. First of all, replacing z(x) with z(x)g(x)−1, for a convenient g(x) ∈ C(x), and a(x) with a(x) g(x)
g(x+1) , we

can suppose that two distinguished poles of a(x) do not di�er by an integer.
It follows from Corollary 7.1, that z(x) is di�erentially algebraic over k(x) if and only if there exist a positive

integer n, λ0, . . . , λn ∈ C and g ∈ C(x) such that

λ0
∂(a)

a
+ λ1∂

(
∂(a)

a

)
+ · · ·+ λn∂

n

(
∂(a)

a

)
= g(x+ 1)− g(x).

In the di�erential relation above, the right hand side must have at least two pole in any τ -orbit where it has a
pole. while the left hand side has at worst one pole per τ -orbit. We conclude that a(x) is constant.

On the other hand, if a(x) = c g(x+1)
g(x) and we choose a logarithm log c of c, a general solution of y(x+ 1) =

a(x)y(x) has the form z(x) = p(x) exp(x log c), with p(x) ∈ k. The latter is di�erentially algebraic over k(x).
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7.2 Linear inhomogeneous q-di�erence equations of the �rst order

We consider the setting of q-di�erence equations, i.e., F is the �eld of meromorphic functions over C∗, q is a
�xed complex number such that |q| > 1, τ : f(x) 7→ f(qx), K = k(x), with k = F τ . We consider the derivation
∂ = x d

dx , that commutes with τ .
With respect to di�erential algebraicity, the case of q-di�erence equations deeply di�ers from the case of

�nite di�erence equation because of the following property (see Example 7.4):

Lemma 7.6. The �eld of elliptic functions k is di�erentially algebraic over C.

To prove Lemma 7.6, it su�ces to write the torus C∗/qZ in the form C/Z+ iτZ, where q = exp(2iπτ), using
the exponential function, and remember that the Weierstrass function ℘ is di�erentially algebraic over C(x),
which is itself di�erentially algebraic over C.

For further reference, we state the following corollary which is a consequence of the fact that, if we have a
tower of di�erentially algebraic extensions k̃/k′ and k′/k, then k̃/k is also di�erentially algebraic:

Corollary 7.7. For a meromorphic function f ∈ F , it is equivalent to be di�erentially algebraic over the
following �elds: k(x), k, C(x), C.

Taking into account the previous lemma, the proof of the corollary below follows word by word the proof of
Corollary 7.1:

Corollary 7.8. In the notation above, let f ∈ K∗ and z ∈ F be such that τ(z) = z+f . The following assertions
are equivalent:

1. f is di�erentially algebraic over K.

2. f is di�erentially algebraic over C(x).

3. f is D-�nite over K.

4. There exist a positive integer n, λ0, . . . , λn ∈ k and g ∈ K such that

λ0f + λ1∂ (f) + · · ·+ λn∂
n (f) = g(qx)− g(x).

Moreover, if f ∈ Q(x) (resp. C(x)), they are also equivalent to:

1. There exist a positive integer n, λ0, . . . , λn ∈ Q (resp. C) and g ∈ Q(x) (resp. C(x)) such that

λ0f + λ1∂ (f) + · · ·+ λn∂
n (f) = g(qx)− g(x).

We �nally conclude by proving a result for homogenous order 1 q-di�erence equations:

Corollary 7.9. [HS08, Corollary 3.4] Let a(x) ∈ C(x)∗ and let z be a meromorphic function over C∗ (resp. C)
be a solution of z(qx) = a(x)z(x). The z(x) is di�erentially algebraic over C(x) (or equivalently over k(x)) if

and only if a(x) = cxn g(qx)
g(x) , for some g(x) ∈ C(x), n ∈ Z and c ∈ C (resp. n = 0 and c ∈ qZ).

Proof. If a(x) = cxn g(qx)
g(x) , then a meromorphic solution in F is given by z(x) = p(x)Θ(cx)

Θ(x) Θ(x)ng(x), where

p(x) ∈ k and Θ(x) =
∑
n∈Z q

−n(n+1)/2xn ∈ F is the Jacobi Theta function, which veri�es the functional

equation Θ(qx) = xΘ(x). Notice that ∂
(
∂(Θ(x))

Θ(x)

)
∈ k, therefore z is di�erentially algebraic over C(x). In

particular, if n = 0, and c is an integer power of q, the solution is also meromorphic at zero.
Let us prove the inverse. We assume that z is meromorphic over C∗. First of all, replacing z(x) with

z(x)g(x)−1, for a convenient g(x) ∈ C(x), and a(x) with a(x) g(x)
g(qx) , we can suppose that two distinguished poles

of a(x) do not di�er by an integer power of q.
It follows from Corollary 7.8, that z(x) is di�erentially algebraic over C(x) if and only if there exist a positive

integer n, λ0, . . . , λn ∈ C and g ∈ C(x) such that

λ0
∂(a)

a
+ λ1∂

(
∂(a)

a

)
+ · · ·+ λn∂

n

(
∂(a)

a

)
= g(qx)− g(x).

The di�erential relation above shows that a(x) must have at least two poles in any non-zero τ -orbit, which is
in contradiction with our assumptions, therefore we conclude that a(x) = cxn, for some c ∈ C and n ∈ Z.

If moreover z is has a pole at zero, rather than an essential singularity, we can take the expansion of z in
C((x)). Plugging it into the equation z(qx) = cxnz(x), we see that n = 0 and hence that c must be an integer
power of q.
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7.3 A particular case of the Ishizaki-Ogawara's theorem

In the case of q-di�erence equations we give a Galoisian proof of the following statement, which is a particular
case of Ogawara's theorem [Oga14, Theorem 2]. As already noted by Ogawara, Ishizaki's theorem [Ish98,
Theorem 1.2] can be deduced from his formal result. The latter is proved using elementary complex analysis
and it is a crucial ingredient of [DHRS20]. Both Ishizaki's and Ogawara's results are based on the idea that
q-di�erence equations �do not have many solutions which are meromorphic in a neighborhood of 0�. In this
subsection we only need to assume that q 6= 0 is not a root of unity, hence we allow q to have norm equal to 1.

Proposition 7.10. [Oga14, Theorem 2] Let q ∈ Cr {0, roots of unity}, f ∈ C(x), f 6= 0 and let z ∈ C((x)) be
a formal power series solution of τ(z) = z + f . The following assertions are equivalent:

1. z ∈ C(x).

2. z is algebraic over C(x).

3. z is D-�nite over C(x).

4. z is di�erentially algebraic over C(x).

Proof. The implications 1⇒ 2⇒ 3⇒ 4 are trivial. We prove that 4⇒ 1. We decompose f(x) into elementary
fractions and we take care of each part of the decomposition separately. We consider a pole α ∈ C∗ of f(x)
such that all the other poles of f(x) in αqZ are of the form q−nα, with n ≥ 0. Let Nα the largest integer
such that q−Nαα is a pole of f(x) and

∑
i

ai
(x−q−Nαα)i

be the polar part of f(x) at q−Nαα. We set h1(x) =∑
i

qiai
(x−q−Nαα)i

. Replacing z(x) with z1(x) = z(x)+h1(x), we are reduced to consider a new functional equation

y(qx) = y(x) + f1(x), with f1(x) = f(x)− h1(qx) + h1(x), which has a smaller Nα. Iterating the argument we
obtain a q-di�erence equation with an inhomogeneous term f(x) having at most a single pole in each q-orbit
αqZ. Corollary 6.7 (for F = C((x)) and K = C(x)) implies that there exist n ≥ 0, λ0, . . . , λn ∈ C, not all zero,
and g ∈ C(x) such that λ0f + λ1∂(f) + · · · + λn∂

n(f) = τ(g)− g. Since τ(g)− g cannot have a single pole in
qZα, for α 6= 0, we conclude that the rational function f(x) must have no pole at all in qZα. We are reduced
to prove the claim in the case f ∈ C[x, x−1], but this assumption obliges z(x) ∈ C((x)) to be an element of
C[x, x−1], as one can see directly from the equation f(x) = z(qx) − z(x), identifying the coe�cients of xn, for
every integer n. This ends the proof.

The expansion at zero de�nes an injective morphism from the �eld of meromorphic functions over C to
C((x)), which commutes to the action of ∂, therefore we obtain:

Corollary 7.11. [Ish98, Theorem 1.2] Let f ∈ C(x), f 6= 0 and let z ∈ F be a meromorphic function over C,
solution of τ(z) = z + f . Then the assertions of Proposition 7.10 are equivalent for z.

Remark 7.12. The reader can �nd a Galoisian proof of the Ishizaki theorem in whole generality in [HS08,
Proposition 3.5], i.e., for equations of the form τ(y) = ay + f . The general statement can be proven using the
parameterized Galois theory of di�erence equations.

Remark 7.13. We make some comments on the relation between convergent and meromorphic solutions, under
the assumption that |q| 6= 1:

1. An important property of q-di�erence equations is the following:

For a solution of a linear q-di�erence equation with meromorphic coe�cients over C∗, it is
equivalent to be meromorphic in a neighborhood of zero and to be meromorphic over C.

The proof is quite easy and relies on the fact that we have supposed that |q| 6= 1. In fact, this allows to
consider a meromorphic continuation of the solution thanks to the fact that any point can be �brought
next to zero� with a repeated application of τ or of τ−1. It seems that this remark is originally due to H.
Poincaré [Poi90, page 318].

2. Let us suppose that z is a meromorphic function over C and algebraic over C(x). Then z is a meromorphic
function over C, which has at worst a pole at ∞, hence it is rational. This proves that 2 ⇒ 1 in
Proposition 7.10 is true for all linear q-di�erence equations with rational coe�cients, as soon as the
solution is meromorphic at 0.
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8 The Galois correspondence (second part)

In this section we are going to focus on the role of normal subgroups in the Galois correspondence, under the
following assumption.

Assumption 8.1. We suppose that τ is an automorphism of F and induces an automorphism of K. In
di�erence algebra, when τ is an automorphism, i.e. admits an inverse, is usually called inversive.

The assumption above immediately implies that τ is also an automorphism of any Picard-Vessiot ring and
any Picard-Vessiot �eld contained in F . In fact, if U is a fundamental solution of a system τ(Y ) = AY as in
(3.1), we also have τ−1(U) = τ−1(A−1)U . Notice that we continue to work under the assumption of �3 and in
particular that F contains a fundamental solution of the linear system τ(Y ) = AY with coe�cients in K, and
hence, that all our Picard-Vessiot ring and extensions are contained in F .

The main result of this section is the following:

Theorem 8.2. In the notation of Theorem 5.3 above, let H be an algebraic subgroup of G de�ned over k and
let M = LH . The following assertions are equivalent:

1. H is a normal subgroup of G;

2. M is a Picard-Vessiot �eld over K (for a convenient linear di�erence equation).

Assuming the equivalent conditions above, the algebraic group Gal(M/K) is naturally isomorphic to G/H.

In order to complete the proof of the Galois correspondence, we need to prove a quite classical proposition
on the action of the Galois group on the elements of the Picard-Vessiot extension. The proof is not di�cult and
indeed it is quite similar to the di�erential case [vdPS03, Corollary 1.38], but, to the best of my knowledge, it
is not detailed anywhere in the literature. Notice that the hypothesis that τ is inversive is a central ingredient.

Proposition 8.3. Let R ⊂ F be the Picard-Vessiot ring for a linear di�erence system of the form (3.1) over
K and f an element of the �eld of fractions of R. The following statements are equivalent:

1. f ∈ R;

2. the K-vector space spanned by {τn(f), n ≥ 0} has �nite dimension.

Proof. Let us prove that (1)⇒ (2). We remind that there exists a fundamental solution matrix U of a di�erence
system of the form (3.1), such that R = K[U,detU−1]. Let us denote by t1, . . . , td2+1 the elements of the matrix
U , plus detU−1. Since τ(U) = AU and τ(detU−1) = detA−1 · detU−1, for any integer r ≥ 1, the K-vector
space generated by the monomials of degree r in the ti's and their τ -iterated has �nite dimension over K. This
proves the statement, because any f ∈ R can be written as a polynomial in the ti's and hence the K-vector
space spanned by {τn(f), n ≥ 0} is contained in a �nite dimensional K-vector space.

We now show that (2) ⇒ (1). Let W be the K-vector space generated by {τn(f), n ≥ 0}. We consider
the ideal of R de�ned by I := {a ∈ R|aW ⊂ R}. Since f ∈ L and L is the �eld of fractions of R, the ideal I
is non-zero. Moreover τ is inversive, hence W ⊂ τ−1W . Since W and τ−1(W ) are vector spaces of the same
dimension, this implies that τ−1(W ) = W . We conclude that τ(a)W ⊂ τ(aW ) ⊂ R for any a ∈ I and therefore
that I is τ -invariant. Finally, 1 ∈ I, because R is τ -simple, and f ∈W ⊂ R.

Corollary 8.4. Let L/K be a Picard-Vessiot extension and R be the Picard-Vessiot ring of L.

1. Let M be an intermediate �eld which is itself a Picard-Vessiot �eld over K. Moreover let RM be its
Picard-Vessiot ring. Then RM = M ∩R.

2. We �x f ∈ R and a linear di�erence equation L(y) = 0 with coe�cients in K such that L(f) = 0.
Furthermore, we suppose that the operator associated with the equation L(y) = 0 has minimal order m in
τ . Then the solutions of L(y) = 0 in R form a k-vector space of solutions of maximal dimension m.

Proof. 1. The statement follows from the previous proposition, since f ∈M ∩R if and only if f ∈M and f is
a solution of a linear di�erence equation with coe�cients in K.
2. Let W be the space of solution of L(y) = 0 in R. Since f ∈W , we know that W 6= 0 and we can consider a
k-basis w1, . . . , wr of W . The following formula

det


w1 w2 · · · wr y

τ(w1) τ(w2) · · · τ(wr) τ(y)
...

...
. . .

...
...

τ r(w1) τ r(w2) · · · τ r(wr) τ r(y)

 = 0
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gives a τ -di�erence equation L̃(y) = 0 with coe�cients in L having W as space of solutions. By de�nition of
the Galois group, ϕ(W ⊗k B) = W ⊗k B, for any ϕ ∈ G(B) and any k-algebra B. The Galois correspondence

and the invariance by the action of the Galois group show that the coe�cients of L̃(y) = 0 are actually in K.

Because of the minimality of the order of the operator associated with L(y) = 0, we conclude that L and L̃
coincide up to the multiplication of a non-zero element of K. This implies that W ⊂ R has maximal dimension
m over k.

Remark 8.5. Notice that in the proof of the second statement above, we could replace R by any τ -K-algebra
R̃ ⊂ R, such that for any k-algebra B and any ψ ∈ G(B), we have ψ(R̃⊗B) ⊂ (R̃⊗B).

Proof of Theorem 8.2. Let M be a Picard-Vessiot �eld. Then RM := R ∩M is a Picard-Vessiot ring, which
is generated by the entries of a matrix U solution of a di�erence linear system with coe�cients in K, and
its inverse. By de�nition of the di�erence Galois group, for any k-algebra B and any ψ ∈ G(B) we have
ψ(RM ⊗ B) ⊂ RM ⊗ B. It implies that we have a natural group morphism G(B) → Gal(M/K)(B), given by
the restriction of the morphisms. The kernel coincides with H(B), hence H is a normal subgroup of G.

Let us suppose that H is a normal subgroup of G. We set M = LH and RM = R ∩ M , so that any
ϕ ∈ H(B) induces the identity over RM ⊗B. Because of the normality of H(B) in G(B), any ψ ∈ G(B) veri�es
ψ(RM ⊗ B) ⊂ RM ⊗ B. Finally Remark 8.5 shows that RM is generated by the solution of a linear di�erence
equations, and hence that it is a Picard-Vessiot ring. We deduce that M is the �eld of fraction of RM because
they both coincide with LH .

Remark 8.6. In the notation of the proof, for any k-algebra B, we have a functorial isomorphism

(G/H)(B) ∼= Autτ (RM ⊗k B/K ⊗k B),

which is actually an isomorphism of algebraic group.

We remind that kn = Kτn . See Example 2.2.

Corollary 8.7. Let L and G be as above and let G◦ be the connected component of the identity of G. Then, LG
◦

is the relative algebraic closure of K in L (and, hence in our framework coincides with K(kn), for a convenient
positive integer n).

Proof. Since G◦ is a normal subgroup of G, the �nite quotient G/G◦ is isomorphic to Gal(LG
◦
/K). Theorem

4.9 implies that LG
◦
/K is an algebraic extensions, which is also �nitely generated.

Let L̃ be the relative algebraic closure of K in L. Then LG
◦ ⊂ L̃. Since any algebraic element of L over

K is solution of a di�erential equation over K, L̃ is also a Picard-Vessiot �eld, that therefore correspond to an
algebraic subgroup H of G, in the sense that L̃ = LH . The inclusion LG

◦ ⊂ L̃ implies that H ⊂ G◦. Moreover
G/H is a �nite group, because it must have dimension 0, after Theorem 4.9. Since G◦ is the smallest group
such that the quotient G/G◦ is �nite, we deduce that H = G◦ and therefore, from the Galois correspondence,

that L̃ = LG
◦
.

A Behavior of the Galois group with respect to the iteration of τ

Let us consider the system (3.1) and its n-th iteration:

(A.1) τny = Any, where An := τn−1(A) · · · τ(A)A.

We want to compare the Galois group of (3.1) with the Galois group of (A.1).
It follows from the De�nition 3.5 of Picard-Vessiot ring and �eld that, if R (resp. L) is a Picard-Vessiot

ring (resp. �eld) for (3.1) over K, R(kn) (resp. L(kn)) is also a Picard-Vessiot ring (resp. �eld) for (A.1) over

K(kn). Let Gn := Galτ
n

(L(kn)/K(kn)), where we have add the superscript τn to the notation with the obvious
meaning, to avoid any confusion.

Let G◦1 be the identity component of G1. By Corollary 8.7, there exists r, such that kr ⊂ L and that
Galτ (L/K(kr)) = G◦1.

Lemma A.1. In the notation above, we have Galτ
r

(L/K(kr)) = G◦1 ⊗k kr.

Proof. By de�nition, for any kr- algebra B, we have an injective morphisms from G◦1(B)→ Galτ
r

(L/K(kr))(B),
indeed if a morphisms commutes with τ , it commutes also with τn. The equality follows from the fact that the
groups are connected and that they have the same dimension, by Theorem 4.9.
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Proposition A.2. In the notation introduced above, for any n ≥ r, the Galois group of (3.1) over K(kn) is
isomorphic to the Galois group of (A.1) over K(kn).

Proof. The Galois group of (3.1) over K(kn) is Galτ (L(kn)/K(kn)) ∼= G◦1 ⊗k kn. It can be naturally seen as a

subgroup of Galτ
n

(L(kn)/K(kn)). Equality follows from Theorem 4.9 and the connectedness of the groups, as
in the proof of the previous lemma.
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